Финансы. Бизнес. Недвижимость. Услуги. Страхование. Вопросы

Финансы. Бизнес. Недвижимость. Услуги. Страхование. Вопросы

» » Общее технологическое множество производственного элемента может быть. Смотреть страницы где упоминается термин технологическое множество. Производственный процесс и его элементы

Общее технологическое множество производственного элемента может быть. Смотреть страницы где упоминается термин технологическое множество. Производственный процесс и его элементы

Способы описания технологий.

Производство - основная область деятельности фир­мы. Фирмы используют производственные факторы, кото­рые называются также вводимыми (входными) факторами производства. Например, владелец пекарни использует та­кие вводимые факторы производства, как труд рабочих, сырье в виде муки и сахара, а также капитал, вложенный в печи, мешалки и другое оборудование для производства такой продукции, как хлеб, пирожки и кондитерские изде­лия.

Мы можем подразделить производственные факторы на крупные категории - труд, материалы и капитал, каждая из которых включает более узкие группировки. Например, труд как производственный фактор через показатель тру­доемкости объединяет как квалифицированный (плотни­ков, инженеров), так и неквалифицированный труд (сель­скохозяйственных рабочих), а также предприниматель­ские усилия руководителей фирмы. К материалам отно­сятся сталь, пластиковые материалы, электричество, вода и любое другое изделие, которое приобретает фирма и превращает в готовый товар. К капиталу относятся здания, оборудование и товарно-материальные ценности.

Множество всех технологически доступных для данной фирмы векторов чистых выпусков называют производственным множеством и обозначают через Y .

ПРОИЗВОДСТВЕННОЕ МНОЖЕСТВО - множество допустимых технологических способов данной экономической системы (X,Y ) , где X - совокупность векторов затрат , а Y - совокупность векторов выпуска .

П. м. характеризуется следующими особенностями: оно замкнуто и выпукло (см. Множество ), векторы затрат обязательно ненулевые (нельзя что-то производить, ничего не затрачивая), компоненты П. м. - затраты и выпуски - нельзя менять местами, ибо производство - необратимый процесс. Выпуклость П. м. показывает, в частности, тот факт, что отдача от перерабатываемых ресурсов при увеличении объема переработки сокращается.

Cвойства производственных множеств

Рассмотрим экономику с l благами. Для конкретной фирмы естественно рассматривать часть из этих товаров как факторы производства и часть - как выпускаемую продукцию. Следует оговориться, что такое деление довольно условно, так как фирма обладает достаточной свободой в выборе ассортимента производимой продукции и структуры затрат. При описании технологии будем различить выпуск и затраты, представляя последние как выпуск со знаком минус. Для удобства представления технологии продукцию, которая и не затрачивается и не выпускается фирмой, будем относить к ее выпуску, причем объем производства этой продукции считаем равным 0. В принципе не исключена ситуация, в которой продукт, производимый фирмой, также потребляется ею в процессе производства. В этом случае мы будем рассматривать только чистый выпуск данного продукта, т. е. его выпуск минус затраты.



Пусть число факторов производства равно n, а число видов выпускаемой продукции равно m, так что l = m + n. Обозначим вектор затрат (по абсолютной величине) через r 2 Rn+, а объемы выпусков через y 2 Rm+

Вектор (−r, yo) будем называть вектором чистых выпусков. Совокупность всех технологически допустимых векторов чистых выпусков y = (−r, yo) составляет технологическое множество Y . Таким образом, в рассматриваемом случае любое технологическое множество - это подмножество Rn − × Rm+

Такое описание производства носит общий характер. При этом можно не придерживаться жесткого деления благ на продукты и факторы производства: одно и то же благо может при одной технологии затрачиваться, а при другой - производится.

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.

1. Непустота. Технологическое множество Y непусто. Это свойство означает принципиальную возможность осуществления производственной деятельности.

2. Замкнутость. Технологическое множество Y замкнуто. Это свойство скорее техническое; оно означает, что технологическое множество содержит свою границу, и предел любой последовательности технологически допустимых векторов чистого выпуска также является технологически допустимым вектором чистых выпусков.

3. Свобода расходования. Это свойство можно интерпретировать как наличие возможности производить тот же самый объем выпуска, но посредством больших затрат, или меньший выпуск при тех же затратах.

4. Отсутствие «рога изобилия» (“no free lunch”). если y 2 Y и y > 0, то y = 0. Это свойство означает, что для производства продукции в положительном количестве необходимы затраты в ненулевом объеме.

< _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y.

В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0). В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

5. Невозрастающая отдача от масштаба: если y 2 Y и y0 = _y, где 0 < _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y. В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0).

В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

6. Выпуклость: Свойство выпуклости означает возможность «смешивать» технологии в любой пропорции.

7. Необратимость

Пусть из килограмма стали можно произвести 5 подшипников. Необратимость означает, что невозможно произвести из 5-ти подшипников килограмм стали.

8. Аддитивность. если y 2 Y и y0 2 Y , то y + y0 2 Y. Свойство аддитивности означает возможность комбинировать технологии.

9. Допустимость бездеятельности:

Теорема 44:

1) Из невозрастающей отдачи от масштаба и аддитивности технологического множества следует его выпуклость.

2) Из выпуклости технологического множества и допустимости бездеятельности следует невозрастающая отдача от масштаба. (Обратное не всегда верно: при невозрастающей отдаче технология может быть невыпуклой)

3) Технологическое множество обладает свойствами аддитивности и невозрастающей отдачи от масштаба тогда и только тогда, когда оно - выпуклый конус.

Не все допустимые технологии в равной степени важны с экономической точки зрения.

Среди допустимых особо выделяются эффективные технологии. Допустимую технологию y принято называть эффективной, если не существует другой (отличной от нее) допустимой технологии y0 , такой что y0 > y. Очевидно, что такое определение эффективности неявно подразумевает, что все блага являются в определенном смысле желательными. Эффективные технологии составляют эффективную границу технологического множества. При определенных условиях оказывается возможным использовать в анализе эффективную границу вместо всего технологического множества. При этом важно, чтобы для любой допустимой технологии y нашлась эффективная технология y0 , такая что y0 > y. Для того, чтобы это условие было выполнено, требуется, чтобы технологическое множество было замкнутым, и чтобы в пределах технологического множества невозможно было увеличивать до бесконечности выпуск одногоблага, не уменьшая при этом выпуск других благ.

ТЕХНОЛОГИЧЕСКИЙ СПОСОБ - общее понятие, объединяющее два: Т. с. производства (производственный способ, технология ) и Т. с. потребления; совокупность основных характеристик (ингредиентов ) процесса производства (соответственно - потребления ) того или иного продукта . В экономико-математической модели Т. с., или технология (activity), описывается системой присущих ему чисел (вектором ): напр., нормами затрат и выпуска различных ресурсов в единицу времени или в расчете на единицу продукции и т. п., в т. ч. коэффициентами материалоемкости , трудоемкости , фондоемкости , капиталоемкости .

Напр., если x = (x 1 , ..., x m ) - вектор затрат ресурсов (перечисленных под номерами i = 1, 2, ..., m ), а y = (y 1 , ..., y n ) - вектор объемов производства продуктов j= 1, 2, ..., n , то технологиями, технологическими процессами, способами производства можно назвать пары векторов (x,y ). Технологическая допустимость означает здесь возможность получить из затрачиваемых (используемых) ингредиентов вектора x вектор продукции y .

Совокупность всевозможных допустимых технологий (XY ) образует технологическое или производственное множество данной экономической системы .

ВЕКТОР - упорядоченный набор из некоторого количества действительных чисел (таково одно из многих определений - то, которое принято в экономико-математических методах ). Напр., суточный план цеха может быть записан 4-мерным вектором (5, 3, -8, 4), где 5 означает 5 тыс. деталей одного вида, 3 - 3 тыс. деталей второго вида, (-8) - расход металла в т, а последняя компонента, допустим, экономию 4 тыс. кВт. ч электроэнергии. Как видно, число компонент (координат ) В. произвольно (в данном случае план цеха может состоять не из четырех, а из любого другого числа показателей); их недопустимо менять местами; они могут быть как положительными, так и отрицательными.

Векторы можно умножать на действительное число (напр., если увеличить план в 1,2 раза по всем показателям, то получится новый В. с тем же числом компонент). Векторы, содержащие равное число соответственно одноименных аддитивных компонент, можно складывать и вычитать.

Буквенное обозначение В. принято выделять жирным шрифтом (хотя не всегда это соблюдается).

Суммой векторов x = (x 1 ,..., x n) и y = (y 1 , ..., y n ) является также В. (x + y ) = (x 1 + y 1 , ..., x n +y n ).

Скалярным произведением векторов x и y называется число, равное сумме произведений соответствующих компонент этих В.:

Векторы x и y называются ортогональными , если их скалярное произведение равно нулю.

Равенство В. - компонентное, т. е. два В. равны, если равны их соответствующие компоненты.

Вектор 0 - (0, ..., 0) нулевой ;

n -мерный В. - положительный (x > 0), если все его компоненты x i больше нуля, неотрицательный (x ≥ 0), если все его компоненты x i больше 0 или равны нулю, т. е. x i ≤ 0; и полуположительный , если при этом хотя бы одна компонента x i ≥ 0 (обозначение x ≥ 0); если В. имеют равное количество компонент, возможно их упорядочение (полное или частичное), т. е. введение на множестве векторов бинарного отношения > ”: x > y , x y , x y в зависимости от того, положительна, полуположительна или неотрицательна разность x – y.

ЗАКОН УБЫВАЮЩЕЙ ОТДАЧИ -утверждение о том, что если расширяется использование какого-либо одного фактора производства и сохраняются при этом затраты всех остальных факторов (они называются фиксированными ), то физический объем предельного продукта , производимого с помощью указанного фактора, станет (по крайней мере, с определенного этапа) убывать.

ПРОИЗВОДСТВЕННЫЙ ЛУЧ - геометрическое место точек, отображающих пропорциональное увеличение количества ресурсов при использовании определенного технологического способа с возрастающей интенсивностью .

Напр., если сочетание 3 ед. капитала (фондов) и 2 ед. труда (т. е. комбинация 3K + 2L ) дает 10 ед. некоторого продукта, то сочетания 6K + 4L , 9K + 6L , дающие соответственно 20 и 30 ед. и т. д., будут лежать на графике на прямой, называемой П. л. или технологическим лучом. При ином сочетании факторов П. л. будет иметь другой наклон. В силу неделимости многих факторов производства количество технологических способов и соответственно П. л. принимается конечным.

Напр., если в угольной лаве работает бригада из трех шахтеров и к ним добавить еще одного, выработка возрастет на четверть, а если добавить пятого, шестого, седьмого, прирост выработки станет уменьшаться, а затем и прекратится совсем: шахтеры в тесноте будут просто мешать друг другу.

Ключевое понятие здесь - предельная производительность труда (более широко - предельная производительность фактора производства δ Y x ). Напр., если рассматриваются два фактора, то при росте затрат одного из них (первого или второго) его предельная производительность падает.

Закон применим на краткосрочном отрезке времени и для данной технологии (ее пересмотр меняет ситуацию).

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Сущность издержек производства, их классификация. Основные направления снижения издержек производства. Экономическая сущность и функции прибыли. Операционные и внереализационны расходы. Изучение взаимосвязи издержек производства и прибыли предприятия.

    курсовая работа , добавлен 24.05.2014

    Предмет и функции экономтеории. Товар и его свойства. Принципы предельной полезности. Теория денег К. Маркса. Понятие ликвидности, издержек и дохода фирмы. Виды и характерные черты конкуренции. Модель совокупного спроса и предложения. Налоги, их функции.

    шпаргалка , добавлен 11.01.2011

    Предмет экономической теории, структура и функции. Экономические законы и их классификация. Трудовая теория стоимости. Товар и его свойства. Двойственный характер труда, воплощенного в товаре. Величина стоимости товара. Закон стоимости и его функции.

    шпаргалка , добавлен 22.10.2009

    Проблемы издержек производства как предмет исследования ученых-экономистов. Сущность издержек производства и их виды. Роль прибыли в условиях развития предпринимательства. Сущность и функции прибыли, ее виды. Рентабельность предприятия и ее показатели.

    курсовая работа , добавлен 28.11.2012

    Сущность и значение экономического роста. Типы и способы измерения экономического роста. Основные свойства функции Кобба-Дугласа. Показатели и модели экономического роста. Факторы, сдерживающие экономический рост. Производная функция и ее свойства.

    курсовая работа , добавлен 26.06.2012

    Сущность и основные функции прибыли. Экономическая эффективность модернизации технологического оборудования и использование инновационных технологий при ремонте дорожного покрытия автомобильных дорог. Резервы повышения прибыли в строительной организации.

    дипломная работа , добавлен 04.07.2013

    Сущность прибыли в экономической науке: понятие, виды, формы, методы планирования. Сущность метода прямого счета, совмещенного расчета. Основные пути увеличения прибыли на предприятиях России в современных условиях. Связь между оплатой труда и прибылью.

    курсовая работа , добавлен 18.12.2017

2. Производственные множества и производственные функции

2.1. Производственные множества и их свойства

Рассмотрим важнейшего участника экономических процессов – отдельного производителя. Производитель реализует свои цели только через потребителя и поэтому должен угадать, понять, что тот хочет, и удовлетворить его потребности. Будем считать, что имеется n различных товаров, количество n-го товара обозначается х n , тогда некоторый набор товаров обозначается Х = (x 1 , …, x n). Будем рассматривать только неотрицательные количества товаров, так что х i  0 для любого i = 1, ..., n или Х > 0. Множество всех наборов товаров называется пространством товаров С. Набор товаров можно трактовать как корзину, в которой лежат эти товары в соответствующем количестве.

Пусть экономика работает в пространстве товаров С = {X = (x 1 , x 2 , …, x n): x 1 , …, x n  0}. Пространство товаров состоит из неотрицательных n-мерных векторов. Рассмотрим теперь вектор T размерности n, первые m компонентов которого неположительные: x 1 , …, x m  0, а последние (n-m) компонентов неотрицательны: x m +1 , …, x n  0. Вектор X = (x 1 ,…, x m) назовем вектором затрат , а вектор Y = (x m+1 , …, x n) – вектором выпуска . Сам же вектор T = (X,Y) назовем вектором затрат-выпуска, или технологией .

По своему смыслу технология (X,Y) есть способ переработки ресурсов в готовую продукцию: «смешав» ресурсы в количестве X, получим продукцию в размере Y. Каждый конкретный производитель характеризуется некоторым множеством τ технологий, которое называется производственным множеством . Типичное заштрихованное множество представлено на рис. 2.1. Данный производитель затрачивает один товар для выпуска другого.

Рис. 2.1. Производственное множество

Производственное множество отражает широту возможностей производителя: чем оно больше, тем шире его возможности. Производственное множество должно удовлетворять следующим условиям:

    оно замкнуто – это означает, что если вектор Т затрат-выпуска сколь угодно точно приближается векторами из τ, то и Т принадлежит τ (если все точки вектора Т лежат в τ, то Тτ см. рис. 2.1 точки С и В);

    в τ(-τ) = {0}, т. е. если Tτ, T ≠ 0, то -Тτ – нельзя поменять местами затраты и выпуск, т. е. производство – необратимый процесс (множество – τ находится в четвертом квадранте, где у 0);

    множество выпукло, это предположение ведет к уменьшению отдачи от перерабатываемых ресурсов с ростом объемов производства (к увеличению норм расхода затрат на готовую продукцию). Так, из рис. 2.1 ясно, что y/x  убывает при х  -. В частности, предположение о выпуклости ведет к уменьшению производительности труда с ростом объема производства.

Часто выпуклости просто бывает недостаточно, и тогда требуют строгой выпуклости производственного множества (или некоторой его части).

2.2. “Кривая” производственных возможностей

и вмененные издержки

Рассматриваемое понятие производственного множества отличается высокой степенью абстрактности и в силу чрезвычайной общности малопригодно для экономической теории.

Рассмотрим, например рис. 2.1. Начнем с точек В и С. Затраты по этим технологиям одинаковы, а выпуск разный. Производитель, если он не лишен здравого смысла, никогда не выберет технологию В, раз есть более лучшая технология С. В данном случае (см. рис. 2.1), найдем для каждого x  0 самую высокую точку (x, y) в производственном множестве. Очевидно, при затратах х технология (x, y) самая лучшая. Никакая технология (x, b) c b производственной функцией. Точное определение производственной функции:

Y = f(x)(x, y) τ, и если (x, b)  τ и b  y, то b = x.

Из рис. 2.1 видно, что для всякого x  0 такая точка y = f(x) единственна, что, собственно, и позволяет говорить о производственной функции. Но так просто дело обстоит, если выпускается только один товар. В общем случае для вектора затрат Х обозначим множество М х = {Y:(X,Y)τ}. Множество М х – это множество всех возможных выпусков при затратах Х. В этом множестве рассмотрим “кривую” производственных возможностей K x = {YМ х: если ZМ х и Z  Y, то Z = X}, т. е. K x – это множество лучших выпусков, лучше которых нет . Если выпускаются два товара, то это кривая, если же выпускается более двух товаров, то это поверхность, тело или множество еще большей размерности.

Итак, для любого вектора затрат Х все наилучшие выпуски лежат на кривой (поверхности) производственных возможностей. Поэтому из экономических соображений оттуда и должен выбрать производитель технологию. Для случая выпуска двух товаров y 1 , y 2 картина показана на рис. 2.2.

Если оперировать только натуральными показателями (тоннами, метрами и т. д.), то для данного вектора затрат Х мы лишь должны выбрать вектор выпуска Y на кривой производственных возможностей, но какой конкретно выпуск надо выбрать, решить еще нельзя. Если само производственное множество τ выпукло, то и М х выпукло для любого вектора затрат Х. В дальнейшем нам понадобится строгая выпуклость множества М х. В случае выпуска двух товаров это означает, что касательная к кривой производственных возможностей K x имеет с этой кривой только одну общую точку.

Рис. 2.2. Кривая производственных возможностей

Рассмотрим теперь вопрос о так называемых вмененных издержках . Предположим, что выпуск фиксирован в точке A(y 1 , y 2), см. рис. 2.2. Теперь возникла необходимость увеличить выпуск 2-го товара на y 2 , используя, конечно, прежний набор затрат. Сделать это можно, как видно из рис. 2.2, перенеся технологию в точку В, для чего с увеличением выпуска второго товара на y 2 придется уменьшить выпуск первого товара на y 1 .

Вмененными издержками первого товара по отношению ко второму в точке А называется
. Если кривая производственных возможностей задана неявным уравнением F(y 1 ,y 2) = 0, то δ 1 2 (A) = (F/y 2)/(F/y 1), где частные производные взяты в точке А. Если внимательно вглядеться в рассматриваемый рисунок, то можно обнаружить любопытную закономерность: при движении слева вниз по кривой производственных возможностей вмененные издержки уменьшаются от очень больших величин до очень малых.

2.3. Производственные функции и их свойства

Производственной функцией называется аналитическое соотношение, связывающее переменные величины затрат (факторов, ресурсов) с величиной выпуска продукции. Исторически одними из первых работ по построению и использованию производственных функций были работы по анализу сельскохозяйственного производства в США. В 1909 г. Митчерлих предложил нелинейную производственную функцию: удобрения – урожайность. Независимо от него Спиллман предложил показательное уравнение урожайности. На их основе был построен ряд других агротехнических производственных функций.

Производственные функции предназначены для моделирования процесса производства некоторой хозяйственной единицы: отдельной фирмы, отрасли или всей экономики государства в целом. С помощью производственных функций решаются задачи:

    оценки отдачи ресурсов в производственном процессе;

    прогнозирования экономического роста;

    разработки вариантов плана развития производства;

    оптимизации функционирования хозяйственной единицы при условии заданного критерия и ограничений по ресурсам.

Общий вид производственной функции: Y = Y(X 1 , X 2 , …, X i , …, X n), где Y – показатель, характеризующий результаты производства; X – факторный показатель i-го производственного ресурса; n – количество факторных показателей.

Производственные функции определяются двумя группами предположений: математических и экономических. Математически предполагается, что производственная функция должна быть непрерывной и дважды дифференцируемой. Экономические предположения состоят в следующем: при отсутствии хотя бы одного производственного ресурса производство невозможно, т. е. Y(0, X 2 , …, X i , …, X n) =

Y(X 1 , 0, …, X i , …, X n) = …

Y(X 1 , X 2 , …, 0, …, X n) = …

Y(X 1 , X 2 , …, X i , …, 0) = 0.

Однако, только с помощью натуральных показателей определить для данных затрат Х единственный выпуск Y удовлетворительно не удается: наш выбор сузился лишь до «кривой» производственных возможностей K x . В силу этих причин разработана лишь теория производственных функций производителей, выпуск которых можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска.

Пространство затрат m-мерно. Каждой точке пространства затрат Х = (х 1 , …, х m) соответствует единственный максимальный выпуск (см. рис. 2.1), произведенный при использовании этих затрат. Эта связь и называется производственной функцией. Однако обычно производственную функцию понимают не столь ограничительно и всякую функциональную связь между затратами и выпуском считают производственной функцией. В дальнейшем будем считать, что производственная функция имеет необходимые производные. Предполагается, что производственная функция f(X) удовлетворяет двум аксиомам. Первая из них утверждает, что существует подмножество пространства затрат, называемое экономической областью Е, в которой увеличение любого вида затрат не приводит к уменьшению выпуска. Таким образом, если X 1 , X 2 – две точки этой области, то X 1  X 2 влечет f(X 1)  f(X 2). В дифференциальной форме это выражается в том, что в этой области все первые частные производные функции неотрицательны: f/x 1 ≥ 0 (у любой возрастающей функции производная больше нуля). Эти производные называются предельными продуктами , а вектор f/X = (f/x 1 , …, f/x m) – вектором предельных продуктов (показывает во сколько раз изменится выпуск продукции при изменении затрат).

Вторая аксиома утверждает, что существует выпуклое подмножество S экономической области, для которой подмножества {XS:f(X)  a} выпуклы для всех а  0. В этом подмножестве S матрица Гёссе, составленная из вторых производных функции f(X), отрицательно определена, следовательно,  2 f/x 2 i

Остановимся на экономическом содержании этих аксиом. Первая аксиома утверждает, что производственная функция не какая-то совершенно абстрактная функция, придуманная теоретиком-математиком. Она, пусть и не на всей своей области определения, а только лишь на ее части, отражает экономически важное, бесспорное и в то же время тривиальное утверждение: в разумной экономике увеличение затрат не может привести к уменьшению выпуска. Из второй аксиомы поясним только экономический смысл требования, чтобы производная  2 f/x 2 i была меньше нуля для каждого вида затрат. Это свойство называется в экономике за коном убывающей отдачи или убывающей доходности : по мере увеличения затрат, начиная с некоторого момента (при входе в область S!), на чинает уменьшаться предельный продукт. Классическим примером этого закона является добавление все большего и большего количества труда в производство зерна на фиксированном участке земли. В дальнейшем подразумевается, что производственная функция рассматривается на области S, в которой обе аксиомы справедливы.

Составить производственную функцию данного предприятия можно, даже ничего не зная о нем. Надо только поставить у ворот предприятия счетчик (человека или какое-то автоматическое устройство), который будет фиксировать Х – ввозимые ресурсы и Y – количество продукции, которую предприятие произвело. Если накопить достаточно много такой статической информации, учесть работу предприятия в различных режимах, то потом можно прогнозировать выпуск продукции, зная только объем ввезенных ресурсов, а это и есть знание производственной функции.

2.4. Производственная функция Кобба-Дугласа

Рассмотрим одну из наиболее распространенных производственных функций – функцию Кобба-Дугласа: Y = AK  L  , где A, ,  > 0 – константы,  + 

Y/K = AαK α -1 L β > 0, Y/L = AβK α L β -1 > 0.

Отрицательность вторых частных производных, т. е. убывание предельных продуктов: Y 2 /K 2 = Aα(α–1)K α -2 L β 0.

Перейдем к основным экономико-математическим характеристикам производственной функции Кобба-Дугласа. Средняя производительность труда определяется как y = Y/L – отношение объема произведенного продукта к количеству затраченного труда ; средняя фондоотдача k = Y/K – отношение объема произведенного продукта к величине фондов .

Для функции Кобба-Дугласа средняя производительность труда y = AK  L  , и в силу условия  с увеличением затрат труда средняя производительность труда падает. Этот вывод допускает естественное объяснение – поскольку величина второго фактора К остается неизменной, то, значит, вновь привлекаемая рабочая сила не обеспечивается дополнительными средствами производства, что и приводит к снижению производительности труда (это справедливо и в самом общем случае – на уровне производственных множеств).

Предельная производительность труда Y/L = AβK α L β -1 > 0, откуда видно, что для функции Кобба-Дугласа предельная производительность труда пропорциональна средней производительности и меньше ее. Аналогично определяются средняя и предельная фондоотдачи. Для них также справедливо указанное соотношение – предельная фондоотдача пропорциональна средней фондоотдаче и меньше ее.

Важное значение имеет такая характеристика, как фондовооруженность f = K/L, показывающая объем фондов, приходящийся на одного работника (на одну единицу труда) .

Найдем теперь эластичность продукции по труду:

(Y/L):(Y/L) = (Y/L)L/Y = AβK α L β -1 L/(AK α L β) = β.

Таким образом, ясен смысл параметра – это эластичность (отношение предельной производительности труда к средней производительности труда) продукции по труду . Эластичность продукции по труду означает, что для увеличения выпуска продукции на 1 % необходимо увеличить объем трудовых ресурсов на  %. Аналогичный смысл имеет параметр  – это эластичность продукции по фондам .

И еще одно значение представляется интересным. Пусть  +  = 1. Легко проверить, что Y = (Y/K)/K + (Y/L)L (подставляя уже вычисленные ранее Y/K, Y/L в эту формулу). Будем считать, что общество состоит только из рабочих и предпринимателей. Тогда доход Y распадается на две части – доход рабочих и доход предпринимателей. Поскольку при оптимальном размере фирмы величина Y/L – предельный продукт по труду – совпадает с заработной платой (это можно доказать), то (Y/L)L представляет собой доход рабочих. Аналогично величина Y/K есть предельная фондоотдача, экономический смысл которой есть норма прибыли, следовательно, (Y/K)K представляет доход предпринимателей.

Функция Кобба-Дугласа – наиболее известная среди всех производственных функций. На практике при ее построении иногда отказываются от некоторых требований (например, сумма  +  может быть больше 1 и т. п.).

Пример 1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на а = 3 %, надо увеличить основные фонды на b = 6 % или численность работников на c = 9 %. В настоящее время один работник за месяц производит продукции на М = 10 4 руб. , а всего работников L = 1000. Основные фонды оцениваются в K = 10 8 руб. Найти производственную функцию.

Решение. Найдем коэффициенты , :  = а/b = 3/6 = 1/2,  = а/с = = 3/9 = 1/3, следовательно, Y = AK 1/2 L 1/3 . Для нахождения А подставим в эту формулу значения K, L, M, имея в виду, что Y = ML = 1000 . 10 4 = 10 7 – – 10 7 = А(10 8) 1/2 1000 1/3 . Отсюда А = 100. Таким образом, производственная функция имеет вид: Y = 100K 1/2 L 1/3 .

2.5. Теория фирмы

В предыдущем разделе мы, анализируя, моделируя поведение производителя, использовали только натуральные показатели и обошлись без цен, однако не смогли окончательно решить задачу производителя, т. е. указать единственный способ действий для него в сложившихся условиях. Теперь введем в рассмотрение цены. Пусть Р – вектор цен. Если Т = (X,Y) – технология, т. е. вектор «затраты-выпуск», X – затраты, Y – выпуск, то скалярное произведение PT = PX + PY есть прибыль от использования технологии Т (затраты – отрицательные количества). Теперь сформулируем математическую формализацию аксиомы, описывающей поведение производителя.

Задача производителя: производитель выбирает технологию из своего производственного множества, стремясь максимизировать прибыль. Итак, производитель решает следующую задачу: РТ→max, Tτ. Эта аксиома резко упрощает ситуацию выбора. Так, если цены положительны, что естественно, то компонента «выпуск» решения этой задачи автоматически будет лежать на кривой производственных возможностей. Действительно, пусть T = (X,Y) – какое-нибудь решение задачи производителя. Тогда существует ZK x , Z  Y, следовательно, P(X, Z)  P(X, Y), значит, точка (X, Z) также есть решение задачи производителя.

Для случая двух видов продуктов задачу можно решить графически (рис. 2.3). Для этого надо «двигать» прямую линию, перпендикулярную вектору Р, в направлении, куда он показывает; тогда последняя точка, когда эта прямая линия еще пересекает производственное множество, и будет решением (на рис. 2.3. это точка Т). Как легко видеть, строгая выпуклость нужной части производственного множества во втором квадранте гарантирует единственность решения. Такие же рассуждения действуют и в общем случае, для большего числа видов затрат и выпуска. Однако мы не пойдем по этому пути, а используем аппарат производственных функций и производителя назовем фирмой. Итак, выпуск фирмы можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска. Пространство затрат m-мерно, вектор затрат Х = (х 1 , …, х m). Затраты однозначно определяют выпуск Y, а эта связь и есть производственная функция Y = f(X).

Рис. 2.3. Решение задачи производителя

В данной ситуации обозначим через Р вектор цен на товары-затраты и пусть v – цена единицы выпускаемого товара. Следовательно, прибыль W, являющаяся в итоге функцией Х (и цен, но они считаются постоянными), есть W(X) = vf(X) – PX→max, X  0. Приравнивая частные производные функции W к нулю, получим:

v(f/x j) = p j для j = 1, …, m или v(f/X) = P (2.1)

Будем предполагать, что все затраты строго положительны (нулевые можно просто исключить из рассмотрения). Тогда точка, даваемая соотношением (2.1), оказывается внутренней, т. е. точкой экстремума. И поскольку еще предполагается отрицательная определенность матрицы Гёссе производственной функции f(Х) (исходя из требований к производственным функциям), то это точка максимума.

Итак, при естественных предположениях на производственные функции (эти предположения выполняются для производителя со здравым смыслом и в разумной экономике) соотношение (2.1) дает решение задачи фирмы, т. е. определяет объем Х * перерабатываемых ресурсов, в результате чего получается выпуск Y * = f(Х *) Точку Х * , или (Х * ,f(Х *)) назовем оптимальным решением фирмы. Остановимся на экономическом смысле соотношения (2.1). Как говорилось, (f/X) = (f/x 1 ,…,f/x m) называется предельным вектором-продуктом, или вектором предельных продуктов , а f/x i называется i-м предельным продуктом , или откликом выпуска на изменение i-го товара затрат . Следовательно, vf/x i dx i – это стоимость i-го предельного продукта, дополнительно полученного из dx i единиц i-го ресурса . Однако стоимость dx i единиц i-го ресурса равна р i dx i , т. е. получилось равновесие: можно вовлечь в производство дополнительно dx i единиц i-го ресурса, потратив на его закупку р i dx i , но выигрыша не будет, т. к. получим после переработки продукции ровно на такую же сумму, сколько затратили. Соответственно, оптимальная точка, даваемая соотношением (2.1), является точкой равновесия – уже невозможно выжать из товаров-ресурсов больше, чем затрачено на их покупку.

Очевидно, наращивание выпуска фирмы происходило постепенно: сначала стоимость предельных продуктов была меньше покупной цены потребных для их производства товаров-ресурсов. Наращивание объемов производства идет до тех пор, пока не начнет выполняться соотношение (2.1): равенство стоимости предельных продуктов и покупной цены, потребных для их производства товаров-ресурсов.

Предположим, что в задаче фирмы W(X) = vf(X) – PX → max, X  0, решение Х * единственное для v > 0 и Р > 0. Таким образом, получается вектор-функция X * = X * (v, P), или функции x * I = x * i (v, p 1 , p m) для i = 1, …, m. Эти m функций называются функциями спроса на ресурсы при данных ценах на продукцию и ресурсы. Содержательно эти функции означают, что, если сложились цены Р на ресурсы и цена v на выпускаемый товар, данный производитель (характеризующийся данной производственной функцией) определяет объем перерабатываемых ресурсов по функциям x * I = x * i (v, p 1 , p m) и спрашивает эти объемы на рынке. Зная объемы перерабатываемых ресурсов и подставляя их в производственную функцию, получим выпуск как функцию цен; обозначим эту функцию через q * = q * (v,P) = f(X(v,P)) = Y * . Она называется функцией предложения продукции в зависимости от цены v на продукцию и цен Р на ресурсы.

По определению, ресурс i-го вида называется малоценным , если и только если, x * i /v т. е. при повышении цены на продукцию спрос на малоценный ресурс уменьшается. Удается доказать важное соотношение: q * /P = -X * /v или q * /p i = -x * i /v, для i = 1, …, m. Следовательно, возрастание цены продукции приводит к повышению (понижению) спроса на определенный вид ресурсов, если и только если увеличении платы за этот ресурс приводит к сокращению (возрастанию) оптимального выпуска. Отсюда видно основное свойство малоценных ресурсов: увеличение платы за них ведет к увеличению выпуска продукции! Однако можно строго доказать наличие таких ресурсов, возрастание платы за которые приводит к уменьшению выпуска продукции (т.е. все ресурсы не могут быть малоценными) .

Удается доказать также, что x * i /p i взаимодополняемыми, если x * i /p j взаимозаменяемыми, если x * i /p j > 0. То есть, для взаимодополняемых ресурсов повышение цены на один из них приводит к падению спроса на другой, а для взаимозаменяемых ресурсов повышение цены на один из них приводит к увеличению спроса на другой. Примеры взаимодополняемых ресурсов: компьютер и его составляющие, мебель и дерево, шампунь и кондиционер к нему. Примеры взаимозаменяемых ресурсов: сахар и заменители сахара (например, сорбит), арбузы и дыни, майонез и сметана, масло и маргарин и т. д.

Пример 2. Для фирмы с производственной функцией Y = 100K 1/2 L 1/3 (из примера 1) найти оптимальный размер, если период амортизации основных фондов N=12 месяцев, зарплата работника в месяц а = 1000 руб.

Решение. Оптимальный размер выпуска или объема производства находится из соотношения (2.1). В данном случае выпуск продукции измеряется в денежном выражении, так что v = 1. Стоимость месячного содержания одного рубля фондов 1/N, т. е. получаем систему уравнений

, решая которую находим ответ:
, L = 8 . 10 3 , K = 144 . 10 6 .

2.6. Задачи

1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на 1 %, надо увеличить основные фонды на b = 4 % или численность работников на c = 3 %. В настоящее время один работник за месяц производит продукции на М = 10 5 руб. , а всего работников L = 10 4 . Основные фонды оцениваются в K = 10 6 руб. Найдите производственную функцию, среднюю фондоотдачу, среднюю производительность труда, фондовооруженность.

2. Группа «челноков» в количестве Е решила объединиться с N продавцами. Прибыль от дня работы (выручка минус расходы, но не зарплата) выражается формулой Y = 600(EN) 1/3 . Зарплата «челнока» 120 руб. в день, продавца – 80 руб. в день. Найдите оптимальный состав группы из «челноков» и продавцов, т. е. сколько должно быть «челноков» и сколько продавцов.

3. Бизнесмен решил основать небольшое автотранспортное предприятие. Ознакомившись со статистикой, он увидел, что примерная зависимость ежедневной выручки от числа автомашин А и числа N выражается формулой Y = 900А 1/2 N 1/4 . Амортизационные и другие ежедневные расходы на одну машину равны 400 руб., ежедневная зарплата рабочего 100 руб. Найдите оптимальную численность рабочих и автомашин.

4. Бизнесмен задумал открыть пивной бар. Предположим, что зависимость выручки Y (за вычетом стоимости пива и закусок) от числа столиков М и числа официантов F выражается формулой Y = 200М 2/3 F 1/4 . Расходы на один столик составляют 50 руб., зарплата официанта – 100 руб. Найдите оптимальный размер бара, т. е. число официантов и столиков.

Рассмотрим экономику с l благами. Для конкретной фирмы естественно рассматривать часть из этих товаров как факторы производства и часть - как выпускаемую продукцию. Следует оговориться, что такое деление довольно условно, так как фирма обладает достаточной свободой в выборе ассортимента производимой продукции и структуры затрат. При описании технологии будем различить выпуск и затраты, представляя последние как выпуск со знаком минус. Для удобства представления технологии продукцию, которая и не затрачивается и не выпускается фирмой, будем относить к ее выпуску, причем объем производства этой продукции считаем равным 0. В принципе не исключена ситуация, в которой продукт, производимый фирмой, также потребляется ею в процессе производства. В этом случае мы будем рассматривать только чистый выпуск данного продукта, т. е. его выпуск минус затраты.

Пусть число факторов производства равно n, а число видов выпускаемой продукции равно m, так что l = m + n. Обозначим вектор затрат (по абсолютной величине) через r Rn + , а объемы выпусков через y Rm + . Вектор (−r, yo ) будем называть вектором чистых выпусков . Совокупность всех технологически допустимых векторов чистых выпусков y = (−r, yo ) составляет технологическое множество Y . Таким образом, в рассматриваемом случае любое технологическое множество - это подмножество Rn − × Rm + .

Такое описание производства носит общий характер. При этом можно не придерживаться жесткого деления благ на продукты и факторы производства: одно и то же благо может при одной технологии затрачиваться, а при другой - производится. В этом случае Y Rl .

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.

1. Непустота

Технологическое множество Y непусто.

Это свойство означает принципиальную возможность осуществления производственной деятельности.

2. Замкнутость

Технологическое множество Y замкнуто.

Это свойство скорее техническое; оно означает, что технологическое множество содержит свою границу, и предел любой последовательности технологически допустимых векторов чистого выпуска также является технологически допустимым вектором чистых выпусков.

3. Свобода расходования:

если y Y и y0 6 y, то y0 Y.

Это свойство можно интерпретировать как наличие возможности производить тот же самый объем выпуска, но посредством больших затрат, или меньший выпуск при тех же затратах.

4. Отсутствие «рога изобилия» (“no free lunch”)

если y Y и y > 0, то y = 0.

Это свойство означает, что для производства продукции в положительном количестве необходимы затраты в ненулевом объеме.

Рис. 4.1. Технологическое множество с возрастающей отдачей от масштаба.

5. Невозрастающая отдача от масштаба:

если y Y и y0 = λy, где 0 < λ < 1, тогда y0 Y.

Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба:

если y Y и y0 = λy, где λ > 1, тогда y0 Y.

В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е.

если y Y и y0 = λy0 , тогда y0 Y λ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0).

В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

Рис. 4.2. Выпуклое технологическое множество с убывающей отдачей от масштаба

Свойство выпуклости означает возможность «смешивать» технологии в любой пропорции.

7. Необратимость

если y Y и y 6= 0, то (−y) / Y.

Пусть из килограмма стали можно произвести 5 подшипников. Необратимость означает, что невозможно произвести из 5-ти подшипников килограмм стали.

8. Аддитивность.

если y Y и y0 Y , то y + y0 Y.

Свойство аддитивности означает возможность комбинировать технологии.

9. Допустимость бездеятельности:

Теорема 44:

1) Из невозрастающей отдачи от масштаба и аддитивности технологического множества следует его выпуклость.

2) Из выпуклости технологического множества и допустимости бездеятельности следует невозрастающая отдача от масштаба. (Обратное не всегда верно: при невозрастающей отдаче технология может быть невыпуклой, см. Рис. 4.3 .)

3) Технологическое множество обладает свойствами аддитивности и невозрастающей

отдачи от масштаба тогда и только тогда, когда оно - выпуклый конус.

Рис. 4.3. Невыпуклое технологическое множество с невозрастающей отдачей от масштаба.

Не все допустимые технологии в равной степени важны с экономической точки зрения. Среди допустимых особо выделяются эффективные технологии . Допустимую технологию y принято называть эффективной, если не существует другой (отличной от нее) допустимой технологии y0 , такой что y0 > y. Очевидно, что такое определение эффективности неявно подразумевает, что все блага являются в определенном смысле желательными. Эффективные технологии составляют эффективную границу технологического множества. При определенных условиях оказывается возможным использовать в анализе эффективную границу вместо всего технологического множества. При этом важно, чтобы для любой допустимой технологии y нашлась эффективная технология y0 , такая что y0 > y. Для того, чтобы это условие было выполнено, требуется, чтобы технологическое множество было замкнутым, и чтобы в пределах технологического множества невозможно было увеличивать до бесконечности выпуск одного блага, не уменьшая при этом выпуск других благ. Можно показать, что если технологическое

Рис. 4.4. Эффективная граница технологического множества

множество обладает свойством свободы расходования, то эффективная граница однозначно задает соответствующее технологическое множество.

Начальные курсы и курсы промежуточной сложности, при описании поведения производителя, опираются на представление его производственного множества посредством производственной функции. Уместен вопрос, при каких условиях на производственное множество такое представление возможно. Хотя можно дать более широкое определение производственной функции, однако здесь и далее мы будем говорить только об «однопродуктовых» технологиях, т. е. m = 1.

Пусть R - проекция технологического множества Y на пространство векторов затрат, т. е.

R = { r Rn | yo R: (−r, yo ) Y } .

Определение 37:

Функция f(·) : R 7→R называется производственной функцией , представляющей технологию Y , если при каждом r R величина f(r) является значением следующей задачи:

yo → max

(−r, yo ) Y.

Заметим, что любая точка эффективной границы технологического множества имеет вид (−r, f(r)). Обратное верно, если f(r) является возрастающей функцией. В этом случае yo = f(r) является уравнением эффективной границы.

Следующая теорема дает условия, при которых технологическое множество может быть представлено??? производственной функцией.

Теорема 45:

Пусть для технологического множества Y R × (−R) для любого r R множество

F (r) = { yo | (−r, yo ) Y }

замкнуто и ограничено сверху. Тогда Y может быть представлено производственной функцией.

Замечание: Выполнение условий данного утверждения можно гарантировать, например, если множество Y замкнуто и обладает свойствами невозрастающей отдачи от масштаба и отсутствия рога изобилия.

Теорема 46:

Пусть множество Y замкнуто и обладает свойствами невозрастающей отдачи от масштаба и отсутствия рога изобилия. Тогда для любого r R множество

F (r) = { yo | (−r, yo ) Y }

замкнуто и ограничено сверху.

Доказательство: Замкнутость множеств F (r) непосредственно следует из замкнутости Y . Покажем, что F (r) ограничены сверху. Пусть это не так и при некотором r R суще-

ствует неограниченно возрастающая последовательность {yn }, такая что yn F (r). Тогда вследствие невозрастающей отдачи от масштаба (−r/yn , 1) Y . Поэтому (вследствие замкнутости), (0, 1) Y , что противоречит отсутствию рога изобилия.

Отметим также, что если технологическое множество Y удовлетворяет гипотезе свободного расходования, и существует представляющая его производственная функция f(·), то множество Y описывается следующим соотношением:

Y = { (−r, yo ) | yo 6 f(r), r R } .

Установим теперь некоторые взаимосвязи между свойствами технологического множества и представляющей его производственной функции.

Теорема 47:

Пусть технологическое множество Y таково, что для всех r R определена производственная функция f(·). Тогда верно следующее.

1) Если множество Y выпукло, то функция f(·) вогнута.

2) Если множество Y удовлетворяет гипотезе свободного расходования, то верно и обратное, т. е. если функция f(·) вогнута, то множество Y выпукло.

3) Если Y выпукло, то f(·) непрерывна на внутренности множества R.

4) Если множество Y обладает свойством свободы расходования, то функция f(·) не убывает.

5) Если Y обладает свойством отсутствия рога изобилия, то f(0) 6 0.

6) Если множество Y обладает свойством допустимости бездеятельности, то f(0) > 0.

Доказательство: (1) Пусть r0 , r00 R. Тогда (−r0 , f(r0 )) Y и (−r00 , f(r00 )) Y , и

(−αr0 − (1 − α)r00 , αf(r0 ) + (1 − α)f(r00 )) Y α ,

поскольку множество Y выпукло. Тогда по определению производственной функции

αf(r0 ) + (1 − α)f(r00 ) 6 f(αr0 + (1 − α)r00 ),

что означает вогнутость f(·).

(2) Поскольку множество Y обладает свойством свободного расходования, то множество Y (с точностью до знака вектора затрат) совпадает с ее подграфиком. А подграфик вогнутой функции - выпуклое множество.

(3) Доказываемый факт следует из того, что вогнутая функция непрерывна во внутренно-

сти ее области определения.

(4) Пусть r 00 > r0 (r0 , r00 R). Поскольку (−r0 , f(r0 )) Y , то по свойству свободы расходования (−r00 , f(r0 )) Y . Отсюда, по определению производственной функции, f(r00 ) > f(r0 ), то есть f(·) не убывает.

(5) Неравенство f(0) > 0 противоречит предположению об отсутствии рога изобилия. Значит, f(0) 6 0.

(6) По предположению о допустимости бездеятельности (0, 0) Y . Значит, по определению

В предположении о существовании производственной функции свойства технологии можно описывать непосредственно в терминах этой функции. Покажем это на примере так называемой эластичности масштаба.

Пусть производственная функция дифференцируема. В точке r, где f(r) > 0, определим

локальную эластичность масштаба e(r) как:

Если в некоторой точке e(r) равна 1, то считают, что в этой точке постоянная отдача от масштаба , если больше 1 - то возрастающая отдача , меньше - убывающая отдача от масштаба . Вышеприведенное определение можно переписать в следующем виде:

P ∂f(r) e(r) = i ∂r i r i .

Теорема 48:

Пусть технологическое множество Y описывается производственной функцией f(·) и

в точке r выполнено e(r) > 0. Тогда верно следующее:

1) Если технологическое множество Y обладает свойством убывающей отдачи от масштаба, то e(r) 6 1.

2) Если технологическое множество Y обладает свойством возрастающей отдачи от масштаба, то e(r) > 1.

3) Если Y обладает свойством постоянной отдачи от масштаба, то e(r) = 1.

Доказательство: (1) Рассмотрим последовательность {λn } (0 < λn < 1), такую что λn → 1. Тогда (−λn r, λn f(r)) Y , откуда следует, что f(λn r) > λn f(r). Перепишем это неравенство в виде:

f(λn r) − f(r)

Переходя к пределу, имеем

λn − 1

∂ri

ri 6 f(r).

Таким образом, e(r) 6 1.

Свойства (2) и (3) доказываются аналогично.

Технологические множества Y можно задавать в виде неявных производственных функций g(·). По определению, функция g(·) называется неявной производственной функцией, если технология y принадлежит технологическому множеству Y тогда и только тогда, когда g(y) >

Заметим, что такую функцию можно найти всегда. Например, подходит функция такая, что g(y) = 1 при y Y и g(y) = −1 при y / Y . Заметим, однако, что данная функция не является дифференцируемой. Вообще говоря, не каждое технологическое множество можно описать одной дифференцируемой неявной производственной функцией, причем такие технологические множества не являются чем-то исключительным. В частности, технологические множества, рассматриваемые в начальных курсах микроэкономики, часто бывают такими, что для их описания нужно два (или больше) неравенства с дифференцируемыми функциями, поскольку требуется учитывать дополнительные ограничения неотрицательности факторов производства. Чтобы учитывать такие ограничения, можно использовать векторные неявные

Описание технологического множества однопродуктового элемента, приведенное в предыдущем параграфе, является простейшим. Учет дополнительных свойств технологии элемента приводит к необходимости дополнить его рядом черт. Некоторые из них мы рассмотрим в этом параграфе. Конечно, приводимые рассмотрения не исчерпывают всех имеющихся в этом направлении возможностей.  

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.  

Установим теперь некоторые взаимосвязи между свойствами технологического множества и представляющей его производственной функции.  

Ответ на вопрос зависит от свойств технологического множества У и от множества цен Р, при которых наблюдается предложение.  

Рассмотрим частный случай, когда Р = М++. В этом случае У и У могут не совпадать, поскольку наш метод построения У порождает множества, удовлетворяющее свойству свободы расходования, а технологическое множество У может не удовлетворять свойству свободы расходования (как на Рис. 24.1 и 24.2).  

Проверьте, что эта функция удовлетворяет свойствам функции прибыли . Восстановите по функции прибыли соответствующее ей технологическое множество.  

Номинальные значения этих свойств заложены в конструкции изделия и технологии его изготовления. Их соблюдение в процессе производства осложняется множеством факторов, которые должны быть выявлены и по возможности нейтрализованы. Для этого группа контроля протекания технологических процессов проводит специальное исследование по установлению перечня факторов, значимости каждого из них, связи между ними, характера проявления (случайные или определенные), времени и места действия. В ходе такого исследования на первом этапе изучают состояние вопроса на основании накопленного производственного опыта, анализа технической документации, научных работ и экспериментов. На втором этапе формулируют мероприятия (способы воздействия на выявленные факторы). При выполнении мероприятий осуществляют контроль результатов и корректировку управляющих воздействий на факторы.  

Отметим первое важное свойство множества 7/ - его полноту. Это свойство состоит в том, что в Ti содержатся технологические операции , достаточные для построения любой ТСП для некоторого класса объектов.  

Применяемая в этой отрасли технология изменяет первоначальный состав и структуру исходных сырья и материалов, вследствие чего образуются новые химические соединения, отличающиеся от них физико-химическими и потребительскими свойствами. Технологические процессы отдельных производств весьма разнообразны. Это определяется тем, что химические методы позволяют получать множество продуктов из одного исходного материала, а также использовать разные виды и источники сырья для производства одного и того же продукта.  

Как известно, синтетические полимерные соединения можно в зависимости от их происхождения, условий синтеза и физико-химических свойств подразделить на множество классов и групп. Однако для синтетических смол , применяемых в качестве связующих в армированных материалах, наиболее важным будет классификация по их технологическим и техническим свойствам (табл. 13).  

Совокупность, порядок и характеристики технологических операций составляют технологический процесс , направленный на качественное изменение обрабатываемой среды, ее формы, строения и потребительских свойств. Это наиболее общее содержание понятия "технология" и будем подразумевать его при дальнейшем рассмотрении функций инновационного менеджмента . Кроме того, каждую из множества технологий можно считать производственной, так как любая из них предназначена для производства нового качества исходной среды или материала.  

Теория активных систем (ТАС) - раздел теории управления социально-экономическими системами (зародившийся в стенах Института автоматики и телемеханики и развиваемый в значительной степени его сотрудниками), изучающий свойства механизмов их функционирования, обусловленные проявлениями активности участников системы. Основным методом исследования является математическое (теоретико-игровое) и имитационное моделирование . За тридцать лет своего развития в ТАС были разработаны, исследованы и внедрены множество эффективных механизмов управления . Соответствующие модели и методы находят применение при решении широкого круга задач управления в экономике и обществе - от управления технологическими процессами до принятия решений на уровне регионов и стран.  

Рассмотренные в предыдущем параграфе методы представления технологических множеств производственных элементов характеризуют их свойства, но не задают описание в явном виде. Для однойродуктовых производственных элементов явное описание технологического множества можно задать, используя понятие производственной функции . В 1.2 мы уже касались этого понятия и его использования, в этом параграфе рассмотрение этих вопросов будет продолжено.